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Abstract
Motivated by recent investigations on the Casimir effect, we work out in detail
the commutation relations satisfied by the quantized electromagnetic field in the
presence of one or two dielectric slabs, with arbitrary dispersive and dissipative
properties. In agreement with results derived by previous authors, we explicitly
show that at all points in the empty region between the slabs, including their
surfaces, the electromagnetic fields always satisfy free-field canonical equal-
time commutation relations. This result is a consequence of general analyticity
and detailed fall-off properties at large frequencies satisfied by the reflection
coefficients of all real materials. It is also shown that this result is not obtained
in the case of conductors, if the latter are modelled as perfect mirrors. In such a
case, the free-field form of the commutation relations is recovered only at large
distances from the mirrors. Failure of perfect-mirror boundary conditions to
reproduce the correct form of the commutation relations near the surfaces of the
conductors suggests that caution should be used when these idealized boundary
conditions are used in investigations of proximity phenomena originating from
the quantized electromagnetic field, like the Casimir effect.

PACS numbers: 12.20.−m, 03.70.+k, 12.20.Ds, 42.50.Lc

1. Introduction

The interaction of radiation with matter has always been a fascinating subject of investigation,
and in fact it is at the root of quantum mechanics, with Planck’s work on black body radiation.
Even though, after the development of quantum electrodynamics (QED) in the middle years
of the last century, all fundamental principles involved in this interaction are undoubtedly
well understood at the microscopic level, recent experimental advances have prompted much
interest in theoretical studies of the quantized electromagnetic (e.m.) field in close proximity
to macroscopic bodies. A thorough understanding of this problem is indeed needed for a
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correct interpretation of numerous important proximity phenomena of the e.m. origin that
include cavity QED [1], the Casimir effect [2], radiative heat transfer [3], quantum friction [4],
the Casimir–Polder interaction of Bose–Einstein condensates with a substrate [5], etc. Apart
from the intrinsic interest of these phenomena, it has recently been shown that the quantum
fluctuations of the e.m. field surrounding macroscopic bodies, which are at the origin of the
Casimir effect, could have exciting application in nanotechnology [6].

The common feature of the above e.m. phenomena is that they all involve several
macroscopic bodies and possibly one or more microscopic objects (atoms, ions, etc) placed in
a vacuum and separated by distances (typical separations range from a few tens of nanometers
to several microns) that, while small from a macroscopic point of view, are still large compared
to the interatomic distance in condensed bodies. In such circumstances, the microscopic point
of view is not of great help, because the long range character of the e.m. field implies that
macroscopically large number of atoms are inevitably involved in the interaction. A much
more effective approach would be to describe the influence of the macroscopic bodies on
the quantized e.m. field in the vacuum just outside their boundaries, in terms of macroscopic
features of the bodies like the electric and/or magnetic permittivities. On physical grounds,
one expects that such an approach should be feasible, in certain circumstances at least,
because the wavelengths of the e.m. fields participating in these phenomena are expected to
be of the order of the bodies’ separations and are therefore large on the atomic scale. This
being the case, the use of macroscopic response functions of the bodies should be legitimate.
An inevitable complication that one faces though, when dealing with macroscopic response
functions of real bodies, is that they always display dispersion and absorption. As is it well
known, the former feature is mathematically reflected in the fact that response functions
depend on the frequency ω (we shall neglect spatial dispersion, and therefore we shall not
consider the possible dependence of the response functions on the wave-vector k), while the
presence of dissipation entails that the response functions have a non-vanishing imaginary
part. The existence of absorption, in particular, greatly complicates explicit quantization of
the macroscopic e.m. field. Unfortunately, such a difficulty cannot be disposed of by simply
neglecting dissipation, because dispersive, real-valued response functions inevitably violate
causality, and must therefore be rejected.

Fortunately, though, there exists a way out that avoids the above-mentioned difficulties.
This is so because a full quantization of the e.m. field is usually not needed, as the quantities of
interest are typically statistical averages of quadratic expressions involving the macroscopic
e.m. field. For systems that are in thermodynamic equilibrium, such averages can be expressed
in terms of (the imaginary part of) suitable macroscopic response functions, as a result of
general fluctuation–dissipation theorems derived in the framework of linear-response theory
[7]. This general approach was probably pioneered by Rytov [8] in his investigations of
e.m. fluctuations in the presence of macroscopic bodies in thermal equilibrium, and it was
later used by Lifshitz [9] in his famous theory of dispersion forces between macroscopic
condensed bodies. In one form or another, the fluctuation–dissipation theorem is used in all
existing approaches to problems involving the quantized e.m. field in the vicinity of or inside
macroscopic bodies. In the seventies of the last century, Agarwal used it as the basis of a
systematic investigation of QED in the presence of dielectrics and conductors [10]. For a
review of the most recent work, we address the reader to [11, 12] (see also references therein).
It is important to note that this approach is not restricted to systems in global thermodynamic
equilibrium, as it is still valid in systems that are only in local thermodynamic equilibrium.
This feature permits us to include within the scope of the theory other important phenomena,
like radiative heat transfer between closely separated bodies (for a recent review see [3]),
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and quantum friction [4]. Recently, the theory has also been applied to the investigation of
Casimir–Polder [5, 13] and Casimir [14] forces out of thermal equilibrium.

In this paper, we carefully examine the basic quantum-field-theoretical problem of the
equal-time commutation relations satisfied by the quantized e.m. field in the presence of
dielectrics and/or conductors, in the framework of the general macroscopic theory described
above. Our interest in this problem arose from a paper by Milonni [15] on the Casimir effect,
in which it was found that near a perfectly reflecting slab, the transverse vector potential and
the electric field satisfy a set of equal-time canonical commutation relations of a different
form than the one holding for free fields. This result is quite worrisome, in view of the very
fundamental character of commutation relations, because it contradicts one’s expectations
based on microscopic theory, and therefore it deserves detailed investigation. Addressing this
problem is not only interesting as a matter of principle but it is also important for a better
understanding of the numerous proximity phenomena arising from quantum fluctuations of
the e.m. field described earlier. In many theoretical investigations of these phenomena, one
deals with conductors that are frequently modelled as ideal mirrors. A well-known example
of this is provided by original Casimir’s derivation [16] of the effect that goes under his name.
It is then important to know to what extent conclusions drawn from the ideal-metal model can
be trusted. Indeed Casimir physics offers examples where predictions drawn from the ideal-
metal model are in contradiction with those derived by more realistic modelling of the plates.
One such example is still much debated as we write, and it is the problem of determining the
influence of temperature on the magnitude of the Casimir force between two metallic plates in
vacuum. It turns out that the ideal-metal model predicts a thermal force that, for sufficiently
large separations between the plates, attains a magnitude which is twice the one calculated
on the basis of realistic dielectric models of a conductor, displaying a finite, though large, dc
conductivity (for a review of this puzzle, see for example [17] and references therein).

We point out that recent investigations on the quantization of the macroscopic e.m. field in
the presence of dispersive and dissipative materials [11, 12] indicate that canonical equal-time
commutators should be ensured as a rule, once the physical requirements of finite reflectivity
and absorption losses by the materials are taken into account. In order to further elucidate
this important question in the typical setting of Casimir experiments, in this paper we work
out a fully explicit analysis of the commutators for the e.m. field, in the presence of dielectric
and/or conducting walls with arbitrary dispersion and dissipative features. With respect to
previous works [11, 12], more attention is paid here to the detailed fall-off properties of the
reflection coefficients of real materials at high frequencies. Our main result, confirming the
findings of [11, 12], is that the canonical equal-time commutation relations satisfied by free
e.m. fields are always valid at all points between two macroscopic dielectric or conducting
slabs, including their surfaces, in full agreement with expectations based on the microscopic
theory for a system of charged non-relativistic particles interacting with the e.m. field1. We also
show that canonical commutation relations do not obtain, however, in the case of conductors,
if they are modelled as perfect mirrors. In this case we find that near the conductors, the
equal-time commutation relations of the vector potential with the electric field have a different
form from the free-field case. Only at points that are sufficiently far from the conductors, the
free-fields commutators are recovered. Our results generalize those obtained by Milonni, in
the one slab setting, and show that the modified form of the commutation relation entailed
by perfect-mirror boundary conditions (b.c.) are indeed an artefact of these idealized b.c., not
shared by real materials.

1 Of course in the empty space outside one plate or between two plates, the fields at points (r, t) and (r′, t ′) do not
satisfy unequal-time commutation relations of the same form that holds in free space, for time differences |t − t ′|
large enough for a light signal to travel from r to r′, along a path that hits one of the plates [15].
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The paper is organized as follows. In section 2 we recall the basic commutation relations
satisfied, within the microscopic theory, by the e.m. field in vacuum and in the presence of
charged particles. In section 3 we briefly review some general results of linear response theory,
as applied to macroscopic quantum electrodynamics, and derive formulae for the expectation
values of the field commutators outside a system of macroscopic bodies, in terms of suitable
classical Green’s functions. In section 4 we estimate Green’s functions for a system of one or
two dielectric and/or conducting slabs in vacuum, and in section 5 we use them to calculate
the commutation relations satisfied by the e.m. field outside the slabs. In section 6 we consider
the case of ideal, perfectly reflecting slabs, while section 7 contains our conclusions. Finally,
three appendices conclude the paper.

2. Commutation relations for e.m. fields: microscopic theory

In this section we briefly recall well-known properties of the commutation relations satisfied
by e.m. fields, in the framework of a microscopic theory of non-relativistic matter, where
ponderable matter is modelled as a collection of non-relativistic charged particles. Here and
afterwards, we work in Gaussian e.m. units, and we adopt the Coulomb gauge. As it is
well known, the Coulomb gauge is very convenient for studying problems where matter is
non-relativistic, and high-energy processes are neglected, for it allows a clear separation of
electrostatic and magnetic couplings. In this gauge, quantization is straightforward (see for
example the book [18]). We consider first the case of free fields.

2.1. Free fields

In empty space, Maxwell equations imply that the electric field is purely transverse:

E⊥ = −1

c

∂A⊥
∂t

, (1)

where A⊥ is the transverse vector potential

∇ · A⊥ = 0. (2)

The fields A⊥ and E⊥ satisfy the following well-known equal-time canonical commutation
relations:

[A⊥i (r, t), A⊥j (r′, t)] = 0, (3)

[A⊥ i (r, t), E⊥ j (r′, t)] = −4π i h̄cδ⊥
ij (r − r′), (4)

[E⊥ i (r, t), E⊥ j (r′, t)] = 0, (5)

where δ⊥
ij (x) is the transverse delta function2:

δ⊥
ij (x) =

∫
d3k

(2π)3

(
δij − kikj

k2

)
eik·x, (6)

with k = |k|.
2 For a review of the properties of the transverse delta function, the reader may consult the book [18].
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2.2. e.m. fields coupled to charged particles

When charged particles are present, the phase space of the total system includes, besides the
transverse e.m. fields A⊥ and E⊥, the positions x(α), the conjugate momenta p(α) and the
spins s(α) of the particles (labelled by the index α). They satisfy the standard (equal-time)
commutation relations of non-relativistic quantum mechanics:

[
x

(α)
i , p

(β)

j

] = ih̄δij δαβ, (7)[
s
(α)
i , s

(β)

j

] = ih̄εijks
(α)
k δαβ, (8)

with all other commutators vanishing. In particular x
(α)
i , p

(α)
i and s

(α)
i all commute with the

transverse e.m. fields A⊥ and E⊥. Finally A⊥ and E⊥ satisfy the same equal-time commutation
relations holding in empty space, equations (3)–(5).

When charges are present, the electric field E also has a longitudinal component E‖:

E = E‖ + E⊥, (9)

where E⊥ is still given by equation (1), while E‖ is equal to

E‖(r, t) = −∇U(r, t), (10)

where U is the scalar potential:

U(r, t) =
∑

α

e(α)

|r − x(α)(t)| , (11)

with e(α) the charge of particle α. The scalar potential has to be regarded as a function of the
particles positions, and therefore it is not an independent degree of freedom of the system.
Since the particle positions commute among themselves and with the transverse fields, A⊥
and E⊥, it follows that

[U(r, t), U(r′, t)] = 0, (12)

[U(r, t), A⊥ j (r′, t)] = 0, (13)

[U(r, t), E⊥ j (r′, t)] = 0. (14)

The above equations imply that the equal-time commutation relations (equations (3)–(5))
remain valid, irrespective of the number and positions of the charged particles, if we replace
everywhere the transverse electric field E⊥ j by the total electric field Ej:

[A⊥i (r, t), A⊥j (r′, t)] = 0, (15)

[A⊥ i (r, t), Ej (r′, t)] = −4π ih̄cδ⊥
ij (r − r′), (16)

[Ei(r, t), Ej (r′, t)] = 0. (17)

The obvious conclusion that can be drawn from these elementary remarks is that, within the
microscopic theory, the canonical equal-time commutation relations satisfied by the e.m. fields
(equations (3)–(5) or, alternatively, equations (15)–(17)) should always be valid, and therefore
they should hold, in particular, inside a cavity made of an arbitrary material.
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3. Commutation relations for e.m. fields: macroscopic theory

In this section, we recall a few basic formulae from linear-response theory and we discuss
the type of probes that are needed in order to obtain the commutation relations satisfied by
the macroscopic e.m. field in the presence of dielectrics and conductors. For a review of
linear-response theory we address the reader to [7].

In linear-response theory, one considers a quantum-mechanical system, characterized by a
(time-independent) Hamiltonian H0, in a state of thermal equilibrium described by the density
matrix ρ:

ρ = e−βH /tr(e−βH ), (18)

where β = 1/(kB T ), with kB being the Boltzmann constant and T the temperature. The
system is then perturbed by an external perturbation of the form

Hext = −
∫

d3r
∑

j

Qj (r, t)fj (r, t), (19)

where fj (r, t) are the external classical forces, and Qj(r, t) is the dynamical variable of the
system conjugate to the force fj (r, t). One may assume, without loss of generality, that the
equilibrium values of the quantities Qj(r, t) all vanish: 〈Qj(r, t)〉 = 0. The presence of
the external forces causes a deviation δ〈Qi(r, t)〉 of the expectation values of Qj(r, t) from
their equilibrium values. If the forces fj (r, t) are sufficiently weak, δ〈Qi(r, t)〉 can be taken
to be linear functionals of the applied forces fj (r, t) and one may write

δ〈Qi(r, t)〉 =
∑

j

∫
d3r

∫ t

−∞
dt ′φij (r, r′, t − t ′)fj (r′, t ′). (20)

The above equation assumes that the system was in equilibrium at t = −∞, and that it reacts to
the external force in a causal way. The quantities φij (r, r′, t − t ′) are called response functions
of the system. In principle, they can be measured by applying to the system of interest suitable
external classical probes.

By a straightforward computation in time-dependent perturbation theory one may prove
that the response functions φij (r, r′, t − t ′) are related to the equilibrium (i.e. in the absence of
the external forces) expectation values of the commutators of the dynamical variables Qi(r, t):

φij (r, r′, t − t ′) = i

h̄
〈[Qi(r, t),Qj (r′, t ′)]〉θ(t − t ′), (21)

where θ(x) is the Heaviside step function (θ(x) = 1 for x > 0, θ(x) = 0 for x < 0) and
Qi(r, t) is the Heisenberg operator:

Qi(r, t) = eiH0t/h̄Qi(r, 0) e−iH0t/h̄. (22)

As it is well known, equation (21) is the starting point from which several general fluctuation–
dissipation theorems can be derived that allow us to express the (symmetrized) correlation
functions of the quantities Qi(r, t) in terms of the dissipative component of the response
functions φij . Since we shall not make use of these theorems in what follows, we shall not
present them here, and we address the interested reader to [7] for details.

We wish to exploit equation (21) to study the commutation relations satisfied by
the macroscopic e.m. field at points placed outside a number of dielectric or conducting
bodies. Coherently with the spirit of a macroscopic approach, the dielectrics and the
conductors will be described in terms of the appropriate electric and magnetic susceptibilities.
We suppose from now on that the bodies are made of non-magnetic (μ = 1)), isotropic
and spatially non-dispersive materials, characterized by a frequency-dependent electric
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permittivity ε(r, ω). We also assume that the bodies have sharp boundaries, and are
homogeneous, in such a way that the permittivity ε(r, ω) is independent of r within the
volume occupied by each body, with discontinuities occurring only at the bodies’ interfaces.
The e.m. fields satisfy the usual b.c. of macroscopic electrodynamics, namely (i) tangential
components of E and H and (ii) normal components of D and B must be continuous across the
bodies’ interfaces. It is opportune at this point to make a remark on the validity of the Coulomb
gauge in the presence of dielectrics with sharp boundaries. We note that for non-magnetic
materials, which we only consider in this paper, the above b.c. on the e.m. fields imply that the
vector potential and its first derivatives are continuous across the boundaries of the bodies [19].
As a result, the transversality condition (equation (2)) is meaningful at all points of space,
including points on the surfaces of the bodies. Therefore, even in the presence of dielectrics
with sharp boundaries, the Coulomb gauge can be fully enforced (this is not true, however, for
perfect conductors. See remarks at the end of section 6).

Following Agarwal [10], we now take the external probes to be a system of classical
electric and magnetic dipoles, with densities P(r, t) and M(r, t), respectively, placed outside
the bodies. The external Hamiltonian Hext is then of the form

Hext = −
∫

d3r[P(ext)(r, t) · E(r, t) + M(ext)(r, t) · B(r, t)]. (23)

It is convenient for our purposes to have distinct probes for the longitudinal and the transverse
components of the e.m. field. This can be achieved by demanding that P(ext) be curl free:

∇ × P(ext) = 0. (24)

If we now express in equation (23) the e.m. field in terms of the scalar and vector potentials

E = −∇U − 1

c

∂A⊥
∂t

, B = ∇ × A⊥, (25)

after an integration by parts and exploiting equation (24), the external Hamiltonian can be
rewritten as

Hext =
∫

d3r
[
U(r, t)ρ(ext)(r, t) − 1

c
A⊥(r, t) · j(ext)

⊥ (r, t)
]
, (26)

where ρ(ext) = −∇ · P(ext) and j(ext)
⊥ = c ∇ × M(ext). Note that the current j(ext)

⊥ is transverse:

∇ · j(ext)
⊥ = 0. (27)

We remark once again that the scalar potential U(r, t), in the external Hamiltonian
equation (26) does not represent an independent dynamical variable, and it must be regarded
as a function of the particle’s position, according to equation (11). Therefore, in the absence
of matter, no such term is present in the external Hamiltonian, and the scalar potential is zero.

The response functions are then computed by solving the classical macroscopic Maxwell
equations with ρ(ext) and j(ext)

⊥ as external sources:

∇ · D = 4πρ(ext), (28)

∇ × E +
1

c

∂B
∂t

= 0, (29)

∇ · B = 0, (30)

∇ × H = 1

c

∂D
∂t

+
4π

c
j(ext)
tot , (31)

where

j(ext)
tot = j(ext)

⊥ +
∂P(ext)

∂t
. (32)
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The above equations must be solved, subject to the standard b.c. described earlier. By virtue of
homogeneity of the bodies, and of linearity of the b.c. at the bodies’ interface, the field equations
for the scalar potential U(r, t) are completely decoupled from those for the transverse vector
potential A⊥(r, t). Therefore, we have two independent sets of Green’s functions:

U(r, t) =
∫ t

−∞
dt ′

∫
d3r′ G(r, r′, t − t ′)ρ(ext)(r′, t ′), (33)

A⊥(r, t) = 1

c

∫ t

−∞
dt ′

∫
d3r′ G⊥(r, r′, t − t ′) · j(ext)

⊥ (r′, t ′), (34)

where G⊥(r, r′, t − t ′) has to be understood as a dyadic Green’s function.
From the general result of linear-response theory, equation (21), we then obtain the

following expressions for the two-times expectation values of the commutators of the e.m.
potentials:

〈[U(r, t), U(r′, t ′)]〉 = ih̄G(r, r′, t − t ′), (35)

〈[U(r, t), A⊥i (r′, t ′)]〉 = 0, (36)

〈[A⊥i (r, t), A⊥j (r′, t ′)]〉 = −i h̄G⊥ij (r, r′, t − t ′), (37)

where t > t ′. For our purposes, it is convenient to split Green’s functions, outside the bodies,
as sums of an empty-space contribution plus a correction arising from the material bodies:

G(r, r′, t − t ′) = G(0)(r − r′, t − t ′) + F (mat)(r, r′, t − t ′), (38)

and

G⊥(r, r′, t − t ′) = G(0)
⊥ (r − r′, t − t ′) + F(mat)

⊥ (r, r′, t − t ′). (39)

Here, G(0) and G(0)
⊥ denote Green’s functions in free space, while F (mat) and F(mat)

⊥ describe
the effects resulting from the presence of the bodies. Such a splitting presents the advantage
that all singularities are included in the free parts G(0) and G(0)

⊥ , while the quantities F (mat)

and F(mat)
⊥ are smooth ordinary functions of r and r′. The free-field Green’s functions have the

following well-known expressions:

G(0)(r − r′) = 1

|r − r′|δ(t − t ′) (40)

and

G
(0)
⊥ij = c

∫
d3k

2π2k

(
δij − kikj

k2

)
eik·(r−r′) sin[kc(t − t ′)]. (41)

The factor δ(t − t ′) in the expression of G(0) expresses the instantaneous character of
the longitudinal electric field in the Coulomb gauge. The expressions for the equal-time
commutators of the e.m. fields are easily derived by taking suitable limits of equations (35)–
(37) and of their time derivatives, for t → t ′+. Upon using equations (38) and (39), and
exploiting the following three relations that are obvious consequences of equation (1):

〈[U(r, t), E⊥i (r′, t ′)]〉 = −1

c

∂

∂t ′
〈[U(r, t), A⊥i (r′, t ′)]〉, (42)

〈[A⊥i (r, t), E⊥j (r′, t ′)]〉 = −1

c

∂

∂t ′
〈[A⊥i (r, t), A⊥j (r′, t ′)]〉 (43)
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and

〈[E⊥i (r, t), E⊥j (r′, t ′)]〉 = 1

c2

∂2

∂t ∂t ′
〈[A⊥i (r, t), A⊥j (r′, t ′)]〉, (44)

from equations (35)–(37) we obtain

〈[U(r, t), U(r′, t)]〉 = ih̄A(mat)(r, r′), (45)

〈[U(r, t), A⊥i (r′, t)]〉 = 0, (46)

〈[U(r, t), E⊥i (r′, t)]〉 = 0, (47)

〈[A⊥i (r, t), A⊥j (r′, t)]〉 = −ih̄A
(mat)
⊥ij (r, r′), (48)

〈[A⊥i (r, t), E⊥j (r′, t)]〉 = −4π ih̄cδ⊥
ij (r − r′) +

ih̄

c
B

(mat)
⊥ij (r, r′), (49)

and

〈[E⊥i (r, t), E⊥j (r′, t)]〉 = − i h̄

c2
C

(mat)
⊥ij (r, r′), (50)

where we defined

A(mat)(r, r′) ≡ lim
t→t ′+

F (mat)(r, r′, t − t ′), (51)

A
(mat)
⊥ij (r, r′) ≡ lim

t→t ′+
F

(mat)
⊥ij (r, r′, t − t ′), (52)

B
(mat)
⊥ij (r, r′) ≡ lim

t→t ′+

∂F
(mat)
⊥ij

∂t ′
(r, r′, t − t ′) (53)

and

C
(mat)
⊥ij (r, r′) ≡ lim

t→t ′+

∂2F
(mat)
⊥ij

∂t∂t ′
(r, r′, t − t ′). (54)

By comparing equations (45)–(50) with equations (3)–(5) and equations (12)–(14), we see
that outside the bodies the free-field canonical commutation relations are recovered provided
that the quantities A(mat), A

(mat)
⊥ij , B

(mat)
⊥ij and C

(mat)
⊥ij are zero. We shall prove below that this

is indeed the case, as a result of analyticity and fall-off properties at large frequencies of the
reflection coefficients of all real materials.

Before we turn to detailed computations, we present below the field equations satisfied
by G and G⊥. They are conveniently expressed in terms of the (one-sided) Fourier transforms
of Green’s functions, defined as

G̃(r, r′, ω) =
∫ ∞

0
dt G(r, r′, t) eiωt , (55)

G̃⊥(r, r′, ω) =
∫ ∞

0
dt G⊥(r, r′, t) eiωt . (56)

From Maxwell equations we then obtain

∇ · [ε(r, ω)∇G̃] = −4πδ(r − r′), (57)

(� + ε(r, ω) ω2/c2)G̃⊥(r, r′, ω) = −4π δ⊥(r − r′), (58)

9
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where δ⊥(r − r′) is the transverse delta-function dyad, equation (6). These equations must
be solved with the appropriate b.c. at the bodies’ interfaces, and must be subject to the
conditions required for a retarded Green’s function [20]. For later use, it is useful to recall
the main properties enjoyed by Green’s functions [21]. First of all, they satisfy the following
reciprocity relations:

G̃(r, r′, ω) = G̃(r′, r, ω) (59)

and

G̃⊥ij (r, r′, ω) = G̃⊥ji(r′, r, ω), (60)

which are a consequence of microscopic reversibility. The next set of properties express reality
features of Green’s functions, and are a direct consequence of reality of the external sources

G̃
∗
(r, r′, ω) = G̃(r, r′,−ω), (61)

and

G̃
∗
⊥ij (r, r′, ω) = G̃⊥ij (r, r′,−ω). (62)

The next set of properties is a consequence of the fact that the permittivity ε(ω) of any
causal medium is an analytic function of the frequency w in the upper complex half-plane C+

[22] (see also appendix B). This implies that Green’s functions G̃(r, r′, ω) and G̃⊥(r, r′, ω)

are also analytic in C+, as it must be the case for a retarded response function. In C+ they
satisfy the conditions G̃

∗
(r, r′, w) = G̃(r, r′,−w∗) and G̃

∗
⊥ij (r, r′, w) = G̃⊥ij (r, r′,−w∗)

that generalize the reality conditions (equations (61) and (62)), respectively. These more
general properties imply that Green’s functions are real along the imaginary frequency axis:

G̃(r, r′, iξ) = G̃
∗
(r, r′, iξ), (63)

and

G̃⊥ij (r, r′, iξ) = G̃
∗
⊥ij (r, r′, iξ). (64)

It is finally useful to write down the inversion formulae expressing Green’s functions, in the
time domain, in terms of their Fourier transforms. They are

G(r, r′, t − t ′) =
∫



dw G̃(r, r′, w) e−iw(t−t ′) (65)

G⊥(r, r′, t − t ′) =
∫



dw G̃⊥(r, r′, w) e−iw(t−t ′), (66)

where  is any contour in C+ that can be obtained by smoothly deforming the real frequency
axis, keeping fixed the end-points at infinity. Analyticity of Green’s functions in C+ ensures
that the integrals on the rhs are independent of the chosen contour .

In the next two sections, we shall compute the Green’s functions at points outside a single
dielectric slab, and between two plane parallel slabs.

4. Green’s functions outside dielectrics and conductors

In this section, we evaluate the e.m. Green’s functions for the scalar and for the transverse
vector potentials outside dielectric and/or conducting slabs. We note that Green’s functions
for the total electric field E in a multilayer system have been derived already in [23].

10
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In the next two subsections we shall separately consider the cases of one slab in vacuum,
and two plane-parallel slabs separated by an empty gap. We choose our Cartesian coordinate
system such that the z-axis is perpendicular to the slabs. Translational invariance of the
system in the (x, y) plane implies that the quantities F̃ (mat) and F̃(mat)

⊥ are functions only of
z, z′ and (r⊥ − r′

⊥), where we denote by x⊥ the projection of the vector x onto the (x, y)

plane. The computation is facilitated if we express G̃(0) and G̃(0)
⊥ in a form that is adapted to

the symmetries of our problem. Consider first the free scalar Green’s function G̃(0):

G̃(0)(r − r′) = 1

|r − r′| . (67)

We note that G̃(0) is independent of the complex frequency w, as it must be because of
the instantaneous character of the longitudinal electric field in the Coulomb gauge. For our
purposes, the convenient form of G̃(0) is the following well-known Weyl representation:

G̃(0) =
∫

d2k⊥
2πk⊥

eik⊥·(r⊥−r′
⊥)−k⊥|z−z′ |, (68)

that can be easily obtained by integrating over k3 the standard plane-wave decomposition of
G̃(0). The above expression for G̃(0) can also be written as

G̃(0) =
∫

d2k⊥
2πk⊥

eik̄(±)·(r−r′), (69)

where we define k̄(±) = k⊥ ± ik⊥ ẑ and the upper (lower) sign is for z � z′ (z � z′). Consider
now the familiar representation of G̃(0)

⊥ :

G̃
(0)

⊥ij =
∫

d3k
2π2

1

k2 − k2
0

(
δij − kikj

k2

)
eik·(r−r′), (70)

where k0 = w/c. In appendix A, we show that G̃(0)
⊥ can be decomposed as the sum of two

dyads:

G̃(0)
⊥ = Ũ(0) + Ṽ(0). (71)

Here, Ũ(0) denotes the tensor of components

Ũ ij
(0) = i

∫
d2k⊥
2πkz

(
e⊥ie⊥j +

ξ
(±)
i ξ

(±)
j

k2
0

)
eik(±)·(r−r′), (72)

where kz =
√

k2
0 − k2

⊥ (the square root is defined such that Im(kz) > 0), e⊥ = ẑ × k̂⊥,

k(±) = k⊥ ± kzẑ and ξ± = k⊥ẑ ∓ kzk̂⊥. As to Ṽ ij
(0)

, it can be written as

Ṽ ij
(0) = 1

k2
0

∂2�̃(0)

∂xi∂x ′
j

, (73)

where �̃(0) is the function

�̃(0) =
∫

d2k⊥
2πk⊥

eik̄(±)·(r−r′). (74)

In both equations (72) and (74), the upper (lower) sign is for z � z′ (z � z′). It is useful to
provide a simple intuitive interpretation for the above Green’s functions that will be useful
later when we consider the influence of a material slab. Consider first the expression for G̃

(0)

given in equation (69): we can interpret this as consisting of a superposition of instantaneous
scalar waves originating from point r′ that propagate to the right (left) with the wave-vector
k̄(+) (k̄(−)). Consider now our expression for G̃(0)

⊥ , equation (71). Its first contribution Ũ(0),

11
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equation (72), can be physically interpreted as a superposition of e.m. waves with TE and
TM polarization corresponding, respectively, to the first and second term between the round
brackets in equation (72). These waves originate from point r′ and propagate to the right (left)
with the wave-vector k(+) (k(−)). We note that for k0 > k⊥ these modes represent propagating
waves, while for k0 < k⊥ they are evanescent waves that decay exponentially as we move
away from z′. The second contribution to G̃(0)

⊥ , Ṽ(0) can instead be interpreted as representing
scalar waves that propagate instantaneously from point r′ in the right (left) direction, with the
wave-vector k̄(+) (k̄(−)).

We are now ready to compute F̃ (bodies) and F̃(bodies)
⊥ . We consider first the one-slab case.

4.1. The case of one slab

In this section, we compute Green’s functions outside a single dielectric or conducting slab,
occupying the half-space z < 0. Following the remarks of the previous section, outside the
slab and on its surface, i.e. for z, z′ � 0, we define

G̃(wall)(r, r′, w) = G̃(0)(r − r′) + F̃ (wall)(r⊥ − r′
⊥, z, z′, w) (75)

and

G̃(wall)
⊥ (r, r′, w) = G̃(0)

⊥ (r − r′, w) + F̃(wall)
⊥ (r⊥ − r′

⊥, z, z′, w). (76)

Fixing once and for all z′ � 0, we make for F̃ (wall) the following ansatz:

F̃ (wall) = −
∫

d2k⊥
2πk⊥

r̄(w) eik⊥·(r⊥−r′
⊥)−k⊥(z+z′), z � 0. (77)

For z < 0, the complete Green’s function is taken to be of the form

G̃(wall) =
∫

d2k⊥
2πk⊥

t̄ (w) eik⊥·(r⊥−r′
⊥)−k⊥(z′−z), z < 0. (78)

Both ansatz ensure appropriate fall off for |z| → ∞. It is easy to verify that the above ansatz
satisfy the b.c. at z = 0, provided that we take

r̄(w) = ε(w) − 1

ε(w) + 1
(79)

and

t̄ (w) = 1 − r̄(w). (80)

The chosen forms of F̃ (wall), for z > 0, and G̃(wall), for z < 0, have a simple physical
interpretation that will be useful later when we shall consider the more elaborate case of
two slabs. In the empty space, the source ρ̃(r′, w) generates ‘instantaneous’ scalar waves of
(complex) frequency w originating at r′ and propagating in the right direction (i.e. towards
larger z) with the (complex) wave-vector k̄(+), and in the left direction with the wave-vector
k̄(−). When a wall is present, the left-moving waves hit the wall and then we have a reflected
wave with amplitude r̄(w) and a transmitted wave of amplitude t̄ (w).

We can now evaluate F̃(wall)
⊥ . In a way analogous to equation (71), we decompose it as

F̃(wall)
⊥ = Ũ(wall) + Ṽ(wall). (81)

Inside the slab, for the full Green’s function, we set instead

G̃(wall)
⊥ = Ũ(in) + Ṽ(in), z < 0. (82)

12
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Linearity of the boundary-value problem permits us to determine separately Ũ(wall) and Ṽ(wall).
The physical picture of Ũ(0) as a superposition of TE and TM waves suggests at once the
following ansatz for Ũ(wall):

Ũ ij
(wall) = i

∫
d2k⊥
2πkz

(
e⊥ie⊥j r

(s)(w, k⊥) +
ξ

(+)
i ξ

(−)
j

k2
0

r(p)(w, k⊥)

)
ei(k(+)·r−k(−)·r′), (83)

where r(s)(w, k⊥) and r(p)(w, k⊥) are the familiar Fresnel reflections coefficients for TE and
TM waves, respectively:

r(s)(w, k⊥) = kz − q

kz + q
, (84)

r(p)(w, k⊥) = ε(w)kz − q

ε(w)kz + q
, (85)

where q =
√

ε(w)k2
0 − k2

⊥. A somewhat lengthy solution of the boundary-value problem

indeed confirms the above intuitive form of Ũ ij
(wall)

. Consider now Ṽ(wall). Equation (74)
suggests that we set

Ṽ
(wall)
ij = 1

k2
0

∂2�(wall)

∂xi∂x ′
j

, (86)

while inside the slab (i.e. for z < 0) we set

Ṽ
(in)

ij = 1

k2
0

∂2�(in)

∂xi∂x ′
j

. (87)

It can be seen that the appropriate boundary dielectric conditions at z = 0 are satisfied,
provided that the functions �̃(0), �̃(wall) and �̃(in) fulfil there the following b.c.:

�̃(in)|z=0 = (�̃(0) + �̃(wall))|z=0, (88)

ε(w)�̃(in)′ |z=0 = (�̃(0)′ + �̃(wall)′)|z=0, (89)

where a prime denotes a derivative with respect to z. One then finds

�̃(wall) = −
∫

d2k⊥
2πk⊥

r̄(w) eik̄(+)·r−ik̄(−)·r′
, (90)

where r̄(ω) is the reflection coefficient in equation (79). We note that the expression of �̃(wall)

coincides with that of F̃ (wall). We remark that F̃ (wall) and F̃(wall)
⊥ are analytic functions of the

frequency w in the upper complex plane C+, as a result of analyticity in C+ of the reflection
coefficients r̄(w), r(α)(w) (see appendix B). Moreover, we note that F̃ (wall) has no singularities
along the real-frequency axis, as it can be easily checked from equation (77), if one considers
that the reflection coefficient r̄(w) is finite in C+ (see appendix B). As to F̃(wall)

⊥ , it only has
an integrable singularity at kz = 0. The presence of singular factors proportional to k−2

0 in

the expressions of Ũ
(wall)
ij and Ṽ

(wall)
ij (see equations (83) and (86)) does not cause any further

singularities at w = 0 for it can be verified that these singular terms cancel each other upon
taking the sum of Ũ

(wall)
ij and Ṽ

(wall)
ij as we now show. Indeed, upon collecting in equation (83)

and equation (86) the terms that are singular at w = 0, we obtain

lim
ω→0

F̃
(wall)
⊥ij (r, r′)) = c2 lim

w→0

∫
d2k⊥
2πk⊥

r(p) − r̄

w2
k̄

(+)
i k̄

(−)
j eik̄(+)·r−ik̄(−)·r′

, (91)
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where we made use of the following relations:

ξ(±) = ∓i k̄(±) + O(w2), (92)

k(±) = k̄(±) + O(w2), (93)

kz = i k⊥ + O(w2), (94)

to substitute everywhere ξ(±), k(±) and kz by ∓i k̄(±), k̄(±) and k⊥, respectively. Now in
appendix B it is shown that for both dielectrics and conductors, the difference r(p) − r̄

approaches zero as w2:

r(p)(w) − r̄(w) = O(w2). (95)

Therefore, the ratio (r(p) − r̄)/w2 is finite as ω tends to zero, showing that F̃
(wall)
⊥ij is regular at

w = 0.

4.2. The case of two plane-parallel slabs

In this section we calculate Green’s functions for the case of a cavity constituted by two non-
magnetic homogeneous, isotropic and spatially non-dispersive plane-parallel slabs separated
by vacuum. We assume that the slabs can be characterized by the respective electric
permittivities, ε1(w) and ε2(w). We choose our Cartesian coordinate system in such a way
that slab 1 occupies the region −∞ < z � 0, while slab 2 occupies the region d � z < ∞,
d being the separation between the two slabs. The formulae derived in the preceding section,
for the one-slab case, can be easily generalized to the two-slab setting, on the basis of the
intuitive physical picture of the free Green’s functions as consisting of left- and right-moving
waves originating from r′.

Let us consider first the scalar Green’s function G̃. Analogously to what we did in the
previous section, inside the cavity (i.e. for 0 � z, z′ � d) we set

G̃(cav)(r, r′, w) = G̃(0)(r − r′) + F̃ (cav)(r⊥ − r′
⊥, z, z′, w). (96)

The expression that one finds for F̃ (cav) is analogous to F̃ (wall), but of course one must take
account now of the possibility of multiple reflections off the two slabs. This is easily done, by
inserting for each reflection by slab i the appropriate reflection coefficients r̄i (w) that has an
expression analogous to equation (79) (with εi(w) in the place of ε(w)). Moreover, a factor
e−2k⊥d must be included for each round-way trip from one slab to the other and back. One
obtains

F̃ (cav) =
∫

d2k⊥
2πk⊥

[ (
1

A
− 1

)
(eik̄(+)·(r−r′) + eik̄(−)·(r−r′))

− 1

A
(r̄1 eik̄(+)·r−ik̄(−)·r′

+ r̄2 eik̄(−)·r−ik̄(+)·r′−2k⊥d)

]
, (97)

where A = 1 − r̄1(w) r̄2(w) exp(−2k⊥ d).
For the transverse Green’s function, we set

G̃(cav)
⊥ (r, r′, w) = G̃(0)

⊥ (r − r′, w) + F̃(cav)
⊥ (r⊥ − r′

⊥, z, z′, w), (98)

with

F̃(cav)
⊥ = Ũ(cav) + Ṽ(cav), (99)
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where the symbols have the obvious meaning, analogously to the previous section. The same
arguments that led us to write equation (97) now give

Ũ ij
(cav) = i

∫
d2k⊥
2πkz

{[ (
1

As

− 1

)
(eik(+)·(r−r′) + eik(−)·(r−r′))

+
r

(s)
1

As

eik(+)·r−ik(−)·r′
+

r
(s)
2

As

eik(−)·r−ik(+)·r′+2ikzd

]
e⊥ie⊥j

+
1

k2
0

[ (
1

Ap

− 1

) (
ξ

(+)
i ξ

(+)
j eik(+)·(r−r′) + ξ

(−)
i ξ

(−)
j eik(−)·(r−r′))

+ ξ
(+)
i ξ

(−)
j

r
(p)

1

Ap

eik(+)·r−ik(−)r′
+ ξ

(−)
i ξ

(+)
j

r
(p)

2

Ap

eik(−)·r−ik(+)r′+2ikzd

]}
, (100)

where r
(α)
i , α = s, p are the Fresnel reflection coefficients of slab i for polarization α, and

Aα = 1 − r
(α)
1 r

(α)
2 exp(2ikzd). For Ṽ(cav) we obtain

Ṽ
(cav)

ij = 1

k2
0

∂2�(cav)

∂xi∂x ′
j

, (101)

where

�̃(cav) =
∫

d2k⊥
2πk⊥

[ (
1

A
− 1

)
(eik̄(+)·(r−r′) + eik̄(−)·(r−r′))

− 1

A
(r̄1 eik̄(+)·r−ik̄(−)·r′

+ r̄2 eik̄(−)·r−ik̄(+)·r′−2k⊥d)

]
. (102)

Again we find, as in one-slab case, that the expression of �̃(cav) coincides with that of F̃ (cav).
The same considerations used in the one-slab case can be now repeated for F̃ (cav) and F̃(cav)

⊥ to
show that both quantities are analytic in C+ and have a finite limit for vanishing w.

5. Commutation relations for the em fields inside a cavity

In this section we compute the quantities A(mat), A
(mat)
⊥ij , B

(mat)
⊥ij and C

(mat)
⊥ij for the two slab

setting considered in the previous section. The corresponding quantities shall be denoted by
A(cav), A(cav)

⊥ij , B(cav)
⊥ij and C

(cav)
⊥ij , respectively. We shall see that they all vanish, as a consequence

of the analyticity and fall-off properties at large frequencies of the reflection coefficients of
all real materials. As seen in section 3, vanishing of these quantities entails that the e.m. field
satisfies free-field commutation relations in the empty region between the slabs.

Consider first the quantity A(cav)(r, r′). From its definition (equation (51)) it follows that
A(cav) can be expressed in terms of F̃ (cav) as

A(cav)(r, r′) = lim
τ→0+

∫


dw

2π
F̃ (cav)(r, r′, w) e−iwτ , (103)

where F̃ (cav) is given in equation (97). In appendix B it is shown that the reflection coefficient
r̄(w) of any real material vanishes like w−2 for large values of |w| and this implies, as can be
seen by inspection of equation (97), that F̃ (cav) approaches zero like w−3. Therefore, F̃ (cav) is
absolutely integrable, and then in equation (103) we can take the τ -limit inside the integral.
After we do it we obtain

A(cav)(r, r′) =
∫



dw

2π
F̃ (cav)(r, r′, w). (104)
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The w−3 fall-off rate of F (cav) at infinity now permits us to close the integration contour in
equation (104) in the upper complex w-plane C+, and then analyticity of F̃ (cav) in C+ implies
at once that the integral is zero. Therefore, we conclude that

A(cav)(r, r′) = 0. (105)

We now turn to the quantity A
(cav)
⊥ij (r, r′). In view of its definition (equation (52)) we have

A
(cav)
⊥ij (r, r′) = lim

τ→0+

∫


dw

2π
F̃

(cav)
⊥ij (r, r′, w) e−iwτ , (106)

and then to prove that it vanishes, we need to consider the fall-off properties of F̃
(cav)
⊥ij .

According to equation (99), it is the sum of two terms: F̃
(cav)
⊥ij = Ũ

(cav)

⊥ij + Ṽ
(cav)

⊥ij . As to Ṽ
(cav)

⊥ij

we see, by inspection of equations (101) and (102), that the fall-off rate of r̄(w) implies that
Ṽ

(cav)

⊥ij falls-off like w−4. Consider now Ũ
(cav)

⊥ij . We note first that, because of the kz factors in
the exponentials, all terms on the rhs of equation (100) decay exponentially fast as w goes to
infinity in C+ along any direction not parallel to the real axis. Along the real axis, since Fresnel
reflection coefficients of all real materials decay like w−2 (see appendix B), Ũ

(cav)

⊥ij decays at
least as fast as w−3 (in fact a more careful analysis carried out in appendix C shows that the
rate of decay is actually w−4). Therefore, F̃

(cav)
⊥ij decays in all directions in C+ at least like w−3

and then, by following exactly the same reasoning used in the case of A(cav)(r, r′), we can
prove that

A
(cav)
⊥ij (r, r′) = 0. (107)

We remark that the above equation also holds when either r or r′ or both belong to the slabs
surfaces. Consider now the quantity B

(cav)
⊥ij (r, r′). Recalling its definition (equation (53)), we

have

B
(cav)
⊥ij (r, r′) = i lim

τ→0+

∫


dw

2π
wF̃

(cav)
⊥ij (r, r′, w) e−iwτ . (108)

Thanks to the w−3 fall-off rate of F̃
(cav)
⊥ij (w), the extra power of w does not spoil convergence

of the w-integral on the rhs of equation (108), and therefore the same arguments used to prove
that A

(cav)
⊥ij is zero can be used to obtain

B
(cav)
⊥ij (r, r′) = 0 . (109)

Finally, we consider the quantity C
(cav)
⊥ij (r, r′). For this we have

C
(cav)
⊥ij (r, r′) = lim

τ→0+

∫


dw

2π
w2F̃

(cav)
⊥ij (r, r′, w) e−iwτ . (110)

Proving that C
(cav)
⊥ij vanishes requires much more labour, because of the two extra powers of w

in the integrand on the rhs of equation (110). We relegate the proof in appendix C, where we
show that the decay rate of F̃

(cav)
⊥ij is actually w−4, which is sufficiently fast to imply

C
(cav)
⊥ij (r, r′) = 0. (111)

Having proved that the quantities A(cav), A
(cav)
⊥ij , B

(cav)
⊥ij and C

(cav)
⊥ij vanish, we then reach the

important conclusion that in the empty space between two dielectric and/or conducting slabs,
the e.m. fields satisfy free-field equal-time commutation relations, equation (12)–(17). This
result is consistent with what was expected on the basis of the microscopic theory, for a
system of non-relativistic charged particles interacting with the e.m. field, as we have seen in
section 2. We remark that no singularities are encountered as r and r′ approach the slabs
surfaces, and therefore the canonical form of the free-space commutators also holds on the
surfaces of the slabs. It is important to realize that these results are intimately tied to analyticity
and fall-off properties of the reflection coefficients of real materials.
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6. Commutation relations outside ideal conductors

In this section we investigate the commutation relations satisfied by the e.m. fields outside ideal
conductors. Ideal conductors are characterized by the fact that they have constant reflection
coefficients. Indeed, by taking the limit ε → ∞ in equations (79), (84) and (85), we find
that for an ideal conductor r̄ and r(p) are 1, and r(s) is −1 at all frequencies. Obviously,
constant reflection coefficients are analytic in C+, and therefore the main difference between
ideal conductors and real ones is that the reflection coefficients of the former do not vanish in
the limit of large frequencies. We shall see below that this feature entails that the e.m. field
outside the conductors, and on their surfaces, fails to satisfy free-field canonical equal-time
commutation relations.

In order to determine the commutation relations satisfied by the e.m. field we consider
again equations (45)–(50) that remain valid also for ideal conductors. All that we have to
do then is to evaluate the quantities on the rhs of these equations, using the values of the
reflection coefficients pertaining to ideal conductors. We consider first the simpler case of a
single conducting slab.

We start by evaluating the quantity F (id wall), where the superscript (id wall) stands for a
slab made of an ideal metal. From equation (77) we note that for r̄(w) = 1, F̃ (id wall) becomes
independent of the frequency and, upon taking the inverse time-Fourier transform, one easily
finds that F (id wall) is proportional to δ(t − t ′). Then F (id wall) is zero for all t > t ′ and therefore
from equation (35) we have

〈[U(r, t), U(r′, t ′)]〉 = 0 (ideal conductors). (112)

Upon taking account also of equation (36) we see that outside an ideal conductor, all two-
times commutators involving the scalar potential U have vanishing expectation values, and
this implies

U(r, t) ≡ 0 (ideal conductors).

Therefore, outside an ideal conducting slab, the longitudinal electric field is zero. We evaluate
now the quantity F

(id wall)
⊥ij . Upon using the identity

−e⊥ie⊥j +
ξ

(+)
i ξ

(−)
j

k2
0

= −λkδikδjk +
k

(+)
i k

(−)
j

k2
0

, (113)

where λ1 = λ2 = −λ3 = 1, one finds that, for r̄ = r(p) = 1 and r(s) = −1, equations (81),
(83) and (90) lead to

F̃
(id wall)
⊥ij = −

∫
d2k⊥
2π

[
i

kz

(
λkδikδjk − k

(+)
i k

(−)
j

k2
0

)

× eikz(z+z′) +
1

k⊥

k̄
(+)
i k̄

(−)
j

k2
0

e−k⊥(z+z′)

]
eik⊥·(r⊥−r′

⊥). (114)

By a similar computation as the one described in appendix A, it is possible to verify that the
rhs of the above equation can also be written in the following form:

F̃
(id wall)
⊥ij = −

∫
d3k
2π2

1

k2 − k2
0

(
λkδikδjk − kik

(r)
j

k2

)
ei[k⊥·(r⊥−r′

⊥)+k3(z+z′)], (115)

where k(r) = k⊥ − k3ẑ. From this expression we see that in the case of an ideal wall F̃
(id wall)
⊥ij

decays for large frequencies only like w−2, and not like w−4 as we found in the case of a
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slab made of a real material. This fall-off rate is sufficient to prove, by the same steps used
in the previous section, that equation (107) remains valid. Therefore, we find that also in the
case of an ideal slab the equal-time commutators for the vector potential have the canonical
form (equation (3)) at all points outside the slab, including its surface. The w−2 fall-off rate
is not sufficient however to ensure validity of equation (109), and we show now that for an
ideal conductor equation (109) indeed fails to be true. To see this we take the inverse Fourier
transform of equation (115), as defined in equation (66). The frequency integral, for t > t ′,
can be easily evaluated by closing the contour  in the lower complex plane (which is possible
now because the rhs of equation (115) is also analytic there), and by noting that the integrand
has poles only at k0 = ±k. We get

F
(id wall)
⊥ij = −c

∫
d3k

2π2k

(
λkδikδjk − kik

(r)
j

k2

)
ei[k⊥·(r⊥−r′

⊥)+k3(z+z′)] sin[ck(t − t ′)]. (116)

Then, from equation (49), we obtain

〈[A⊥i (r, t), E⊥j (r′, t)]〉 = −4π ih̄c
[
δ⊥
ij (r − r′) − δ

(id wall)
ij (r⊥ − r′

⊥, z + z′)
]
, (117)

where we defined

δ
(id wall)
ij (r⊥ − r′

⊥, z + z′) =
∫

d3k
(2π)3

(
λkδikδjk − kik

(r)
j

k2

)
ei[k⊥·(r⊥−r′

⊥)+k3(z+z′)]. (118)

We note that δ
(id wall)
ij is a smooth function for z+z′ > 0 approaching zero for large z and z′, but

it is singular when both z and z′ belong to the slab surface (i.e. for z = z′ = 0). In particular,
for i = j = 1, equation (117) gives

〈[A⊥1(r, t), E⊥1(r′, t)]〉 = −4π ih̄c
[
δ⊥

11(r − r′) − δ⊥
11(r⊥ − r′

⊥, z + z′)
]
, (119)

in agreement with the finding of [15]. By using equation (44), and equation (116), it is easy to
verify that the canonical commutation relations for the components of the transverse electric
field, equation (5), remain valid.

We turn now to the more elaborate case of two plane-parallel ideal slabs. We shall
be brief here, the analysis being similar to the one-slab case. First we note that, similarly
to F̃ (id wall), also the quantity F̃ (id cav) becomes independent of the frequency when perfectly
reflecting slabs are considered, as it is easily seen from equation (97). Therefore, F (id cav) is
proportional to δ(t − t ′), and again we conclude that the scalar potential can be taken to be
zero outside the slabs. We consider now the transverse Green’s function. A somewhat lengthy
but straightforward computation analogous to the one done for the one-slab case gives the
following expression for the quantity F

(id cav)
⊥ij :

F
(id cav)
⊥ij = −c

∫
d3k

2π2k

1

A(id)

[(
δij − kikj

k2

)
eik3(2d+z−z′)

+

(
δij − k

(r)
i k

(r)
j

k2

)
eik3(2d−z+z′) +

(
λkδikδjk − kik

(r)
j

k2

)

× eik3(z+z′) +

(
λkδikδjk − k

(r)
i kj

k2

)
eik3(2d−z−z′)

]

× eik⊥·(r⊥−r′
⊥) sin[ck(t − t ′)], (120)

where A(id) = 1 − exp(2ik3d). By using this equation, and recalling equations (48) and (50),
we easily see that the equal-time commutators for the vector potential on one hand and for the
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transverse electric field on the other both vanish inside the cavity and on the slabs surfaces,
in agreement with the free-field case, equation (3) and equation (5). On the other hand, from
equation (49), we get

〈[A⊥i (r, t), E⊥j (r′, t)]〉 = −4π ih̄c
[
δ⊥
ij (r − r′) − δ

(id cav)
ij (r⊥ − r′

⊥, z, z′)
]
, (121)

where

δ
(id cav)
ij (r⊥ − r′

⊥, z, z′) =
∫

d3k
(2π)3

1

A(id)

[ (
δij − kikj

k2

)

× eik3(2d+z−z′) +

(
δij − k

(r)
i k

(r)
j

k2

)
eik3(2d−z+z′) +

(
λkδikδjk − kik

(r)
j

k2

)
eik3(z+z′)

+

(
λkδikδjk − k

(r)
i kj

k2

)
eik3(2d−z−z′)

]
eik⊥·(r⊥−r′

⊥). (122)

We note that the first and the second terms between the square brackets on the rhs of
equation (122) represent smooth functions of z and z′ at all points between the slabs, including
their surfaces, while the third and fourth terms are singular, respectively, on the surface of slab
1 (i.e. for z = z′ = 0) and slab 2 (i.e. for z = z′ = d). Moreover, we observe that in the limit
of large separations d, and for fixed z and z′, the phase factors involving d in the first, second
and fourth terms between the square brackets on the rhs of equation (122), oscillate more and
more rapidly, and so suppress the corresponding terms. In this limit δ

(id cav)
ij tends to δ

(id wall)
ij ,

and then equation (121) reproduces equation (117).
From the above analysis, we see that while all other commutators have the free-field

form, the presence of the extra terms δ
(id wall)
ij and δ

(id cav)
ij on the rhs of equations (117) and

(121), respectively, implies that perfect-mirror b.c. lead to equal-time commutation relations
for the vector potential and the electric field of a different form from the free-field ones,
equation (4). In the one-slab case, equations (117) and (118) show that the free-field form
of the commutators is recovered only when the quantity δ

(id cav)
ij can be neglected, and this

occurs at points z and z′ that are far from the slab. In the cavity setting, equations (121)
and (122) show that free-field commutation relations are recovered only provided that the
quantities 2d + z − z′, 2d − z + z′, z + z′ and 2d − z − z′ are simultaneously large. This
is only possible for large cavities, and for points z and z′ far form both conductors. This is
in contrast with what was found in the previous section, where we proved that in the case
of real materials free-fields equal-time canonical commutation relations retain their validity
everywhere between the slabs, including on their surfaces.

A final comment is in order on gauge issues. As we noted in section 3, in the case
of (nonmagnetic) dielectrics with sharp boundaries the transversality condition equation (2)
defining the Coulomb gauge is valid at all points of space, including at points on the surfaces
of the bodies. This is not true however for ideal conductors, as a result of the fact that the
skin-depth of e.m. fields inside a perfect conductor is strictly zero. Since the vector potential
vanishes inside a perfect conductor, it follows that differently from real dielectrics, which have
a finite skin-depth, the normal component of the vector potential is discontinuous across the
surface of a perfect conductor, and therefore its divergence has a Dirac-delta-type singularity
at points lying on the surface of the conductor. Therefore, even if the vector potential satisfies
the transversality condition, equation (2), at points outside the conductor, the Coulomb gauge
condition is actually violated at points on its surface3. Since the commutation relations

3 We thank an anonymous referee for drawing our attention to this point.
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satisfied by the vector potential are gauge-dependent, one is then led to wonder if the obtained
deviation from the canonical form of the equal-time commutation relations, satisfied by the
vector potential in the case of perfect conductors, could be the result of the fact that the gauge
we are considering does not really coincide with the Coulomb gauge of ordinary QED in
this idealized case. It is easy to verify that this is not so, however, by considering the equal-
time commutators between the magnetic and the electric fields, which are gauge-invariant.
In the case of one slab, for example, by taking the curl with respect to r of both sides of
equation (117), one finds that the commutator of the magnetic field with the electric field
deviates also from its canonical free-space form, as a result of the additional term, proportional
to δ

(idwall)
ij , on the rhs of equation (117).

7. Concluding remarks

In this paper we have determined the commutation relations satisfied by the quantized e.m.
field outside one or two plane-parallel dielectric and/or conducting slabs in vacuum, assuming
that the slabs are made of isotropic and homogeneous, spatially non-dispersive materials, with
arbitrary frequency-dependent dispersion and absorption. Using a general form of macroscopic
quantum electrodynamics, we have found that at all points between the slabs, including on their
surfaces, the e.m. field satisfies canonical commutation relations of the same form as in empty
space, in full agreement with the microscopic theory. This result is a general consequence of
analyticity and fall-off properties at large frequencies satisfied by the reflection coefficients of
all real materials.

We have also shown that free-field equal-time commutation relations do not obtain outside
one or two conducting slabs, if the latter are modelled as perfect mirrors, because of the extra
terms that appear in the commutator of the vector potential with the electric field. Free-field
commutators are only recovered at points that are sufficiently far from the mirror. In the
one-slab setting, our findings coincide with those obtained by Milonni [15] in his investigation
on the Casimir effect. Since no such deviation from free-field commutators is found in the
case of real materials, we draw the conclusion that the modified form of the field commutation
relations implied by perfect-mirror b.c. is an artefact of this idealized model. Even if the
commutator of the vector potential with the electric field, being a gauge-dependent quantity,
is not a physically observable quantity, failure of perfect mirror b.c. to reproduce the correct
free-field form of the equal-time commutation relations near the surfaces of the conductors
indicates that a certain amount of caution should be used when these idealized b.c. are used
in investigations of proximity phenomena originating from the quantized e.m. field in the
presence of conductors.

Before closing, we would like to comment on possible generalization of the results derived
in this paper to other materials, including magnetic materials, and nonisotropic or spatially
dispersive media. Consideration of isotropic magnetic materials offers no difficulties, because
it just requires substituting in our formulae the well-known expression for Fresnel reflection
coefficients, for a medium with magnetic permeability μ. On the other hand, it is known
today that the general formulae (equations (35)–(37)) expressing the expectation values of the
field commutators in terms of their classical Green’s functions, are valid for arbitrary media
[25, 26], and therefore one can use them also in the case of anisotropic and/or spatially
dispersive media provided only that one is able to determine the reflection coefficients for a
slab made of these materials. Since reflection coefficients of all media are analytic functions
of the complex frequency in the upper complex plane, and fall off to zero at large frequencies
[24], it is therefore expected that (free-space) canonical commutation relations remain valid
also for these more general materials.

20



J. Phys. A: Math. Theor. 43 (2010) 155402 G Bimonte

Appendix A. Weyl representation of the transverse Green’s function in empty space

As it is well known, the time Fourier transform of Green’s function for the transverse e.m.
field in free space is given by the formula

G̃
(0)

⊥ij =
∫

d3k
2π2

1

k2 − k2
0

(
δij − kikj

k2

)
eik·(r−r′). (A.1)

An expression analogous to Weyl’s representation of the scalar Green’s function,
equation (68), can be obtained by performing the integral over k3 in equation (A.1). The
integral can be done easily by suitably closing the k3 contour of integration in the complex k3

plane (for z � z′ one closes the contour in the upper half-plane, for z � z′ in the lower plane).
The integral then receives contributions from poles in the integrand of equation (A.1), which
arise from two sources. The first one is the factor involving the inverse of k2 − k2

0, which

gives rise to poles at k3 = ±kz, where kz =
√

k2
0 − k2

⊥ (the square root is defined such that
Im(kz) > 0). Importantly, the second source of poles is the gauge-fixing term inside the round
brackets, proportional to the inverse of k2, which has poles at k3 = ±ik⊥. We correspondingly
split G̃(0)

⊥ as the sum of two terms:

G̃(0)
⊥ = Ũ(0) + Ṽ(0), (A.2)

where Ũ(0) accounts for the former set of poles, and Ṽ(0) for the latter. We find

Ũ
(0)
ij = i

2π

∫
d2k⊥
kz

(
δij − k

(±)
i k

(±)
j

k2
0

)
eik(±)·(r−r′), (A.3)

where k(±) = k⊥ ± kzẑ and

Ṽ
(0)
ij = 1

k2
0

∫
d2k⊥
2πk⊥

k̄
(±)
i k̄

(±)
j eik̄(±)·(r−r′), (A.4)

where k̄(±) = k⊥ ± i k⊥ẑ, and in both equations (A.3) and (A.4) the upper (lower) sign is for
z � z′ (z � z′). It is now convenient to further transform the expression of Ũ

(0)
ij by considering

the following decomposition of the identity δij :

δij = e⊥ie⊥j +
1

k2
0

(
ξ

(±)
i ξ

(±)
j + k

(±)
i k

(±)
j

)
, (A.5)

where e⊥ = ẑ × k̂⊥ and ξ± = k⊥ẑ ∓ kzk̂⊥. Upon replacing δij , in equation (A.3), by the rhs
of equation (A.5), we obtain

Ũ
(0)
ij = i

2π

∫
d2k⊥
kz

(
e⊥ie⊥j +

ξ
(±)
i ξ

(±)
j

k2
0

)
eik(±)·(r−r′). (A.6)

As for Ṽ
(0)
ij , we note that it represents a pure scalar contribution, for it can be written as

Ṽ
(0)
ij = 1

k2
0

∂2�̃

∂xi∂x ′
j

, (A.7)

where

�̃ =
∫

d2k⊥
2π k⊥

eik̄(±)·(r−r′). (A.8)

Upon combining equations (A.6) and (A.7), we obtain the following final expression for G̃
(0)

⊥ij :

G̃
(0)

⊥ij = i

2π

∫
d2k⊥
kz

(
e⊥ie⊥j +

ξ
(±)
i ξ

(±)
j

k2
0

)
eik(±)·(r−r′) +

1

k2
0

∂2�̃

∂xi∂x ′
j

. (A.9)
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Appendix B. Properties of the reflection coefficients

In this appendix, we briefly review some general properties of the reflection coefficients
of dielectrics and conductors that are important for the present paper. They are a direct
consequence of the general properties of the electric permittivity ε(ω). As it is well known
[22], the permittivity ε(ω) of a causal medium is an analytic function of the complex frequency
w in the upper complex plane C+. Moreover, its imaginary part ε′′ is never zero in C+, except
along the positive imaginary axis (w = iξ, ξ > 0), where ε is positive and monotonically
decreasing. For large (complex) frequencies w, the electric permittivities of all materials
approach 1 and have an asymptotic expansion of the form [22]

ε(w) = 1 − A

w2
+ i

B

w3
+ · · · , (B.1)

where A and B are real positive constants characteristic of the material.
As a consequence of the above analyticity properties of ε(w), the reflection coefficients

r̄ , r(p) and r(s), given by equations (79), (85) and (84), respectively, are analytic functions
in C+, and they are real and positive along the positive imaginary axis [24]. The asymptotic
behaviour of ε(w) implies that for large frequencies r̄(w) and r(α)(w, k⊥), α = s, p have
asymptotic expansions of the form

r̄(w) � C̄

w2
+ i

D̄

ω3
+ · · · , r(α)(w, k⊥) � C(α)

w2
+ i

D(α)

w3
+ · · · , (B.2)

where C̄, D̄, C(α) and D̄(α) are real numbers characteristic of the material. We remark that
C(α) and D̄(α) are independent of k⊥.

It is useful to consider also the behaviour of the reflection coefficient in the limit of zero
frequency. In the case of a dielectric, ε(w) approaches a positive constant ε0 > 1 at zero
frequency, and therefore for the reflection coefficients r̄(0), r(p)(0) and r(s)(0), we find

r̄(0) = r(p)(0) = ε0 − 1

ε0 + 1
< 1 (dielectrics) (B.3)

r(s)(0) = 0 (dielectrics). (B.4)

Consider now conductors. At sufficiently low frequency, the permittivity of a conductor is of
the form

ε(w) = 4π i
σ0

w
(conductors), (B.5)

where σ0 is ohmic conductivity. Then for the reflection coefficients at zero frequency, we find

r̄(0) = r(p)(0) = 1 (conductors), (B.6)

r(s)(0) = 0 (conductors). (B.7)

It is also useful to estimate the behaviour of the difference between r(p)(w) and r̄(w)), as w

approaches zero. In the case of dielectrics, one finds

r(p) − r̄ = ε0(ε0 − 1)

(1 + ε0)2

w2

c2k2
⊥

+ O(w4), (B.8)

while, in the case of conductors, we find

r(p) − r̄ = w2

c2k2
⊥

+
iw3

c2k2
⊥σ0

(
3

4π
+

πσ 2
0

c2k2
⊥

)
+ O(w4). (B.9)

We see that in both cases, the difference r(p) − r̄ approaches zero as w2.
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Appendix C. Proof that C(cav)
⊥ij = 0

In this appendix we prove that the quantity C
(cav)
⊥ij defined in equation (110) is zero.

Upon recalling equation (98), we first split C
(cav)
⊥ij as

C
(cav)
⊥ij (r, r′) = Dij (r, r′) + Eij (r, r′), (C.1)

where

Dij (r, r′) = lim
t→t ′+

∂2U
(cav)
ij

∂t∂t ′
(r, r′, t − t ′) (C.2)

and

Eij (r, r′) = lim
t→t ′+

∂2V
(cav)
ij

∂t∂t ′
(r, r′, t − t ′). (C.3)

In terms of Fourier transforms, we can write the above quantities as

Dij = lim
τ→0+

∫


dw

2π
w2Ũ

(cav)

ij (r, r′, w) e−iwτ . (C.4)

Eij = lim
τ→0+

∫


dw

2π
w2Ṽ

(cav)

ij (r, r′, w) e−iwτ . (C.5)

By the same arguments used earlier in the case A(cav)(r, r′), we see that Dij and Eij vanish,

provided that Ũ
(cav)

ij and Ṽ
(cav)

ij fall off like w−4 or faster. By inspection of equations (101)
and (102), and recalling that r̄(w) falls off like w−2, we can easily see that this is the case for
Ṽ

(cav)

⊥ij . Therefore we have

Eij (r, r′) = 0. (C.6)

Consider now the quantity Ũ
(cav)

ij whose expression is provided by equation (100). In order to
estimate the fall-off rate of the various terms on the rhs of equation (100), we need to recall that
Fresnel reflection coefficients of all real materials decay like w−2 (see appendix B). Since the
quantities (1/As −1) and (1/Ap −1) then decay like w−4, we see that all terms involving these
quantities on the rhs of equation (100) fall off at least like w−5 at large frequencies, and therefore
they can be neglected. Consider now the remaining terms in the expression for Ũ

(cav)

ij (r, r′, w).

Upon noticing that for large w, ξ
(±)
i ξ

(±)
j = −ξ

(±)
i ξ

(∓)
j = −ξ

(∓)
i ξ

(±)
j = w2 k̂⊥i k̂⊥j + O(w), we

get

Ũ
(cav)

ij = i
∫

d2k⊥
2πkz

[(
r

(s)
1 eik(+)·r−ik(−)·r′

+ r
(s)
2 eik(−)·r−ik(+)·r′+2ikzd

)
e⊥ie⊥j

− (
r

(p)

1 eik(+)·r−ik(−)·r′
+ r

(p)

2 eik(−)·r−ik(+)·r′+2ikzd
)
k⊥ik⊥j

]
+ O(w−4). (C.7)

Having reached this point, we take advantage of the fact that to order w−3 included, both
Fresnel coefficients are independent of k⊥ (see equation (B.2)). By virtue of this, the rhs of
equation (C.7) can be written as

Ũ
(cav)

ij = 1

w2

∑
α=s,p

∑
m=1,2

K
(α)
m|ij Im(w) + O(w−4), (C.8)

where K
(α)
m|ij are material-dependent constants, and

I1(w) = i
∫

d2k⊥
2πkz

eik(+)·r−ik(−)·r′
, (C.9)
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while

I2(w) = i
∫

d2k⊥
2πkz

eik(−)·r−ik(+)·r′+2ikzd . (C.10)

It is a simple matter to check that the integrals Ii can also be written as

I1(w) =
∫

d3k
2π2

1

k2 − k2
0

ei[k⊥·(r⊥−r′
⊥)+k3(z+z′)], (C.11)

and

I2(w) =
∫

d3k
2π2

1

k2 − k2
0

ei[k⊥·(r⊥−r′
⊥)+k3(2d−z−z′)]. (C.12)

From this we see that both I1 and I2 fall off like w−2, and therefore, in view of equation (C.8),
we find that Ũ

(cav)

ij decays like w−4 or faster. Therefore, Dij is zero, and then we obtain the
desired result

C
(cav)
⊥ij (r, r′) = 0. (C.13)
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